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INTRODUCTION

One could easily Justify the study of the distribution of

quadre.tic forms from the standpoint that many of the tests in

statistics are based on the distributions of quantities which can

be thought of as special cases of either a quadratic form or func-

tions of quadratic forms. The applications are too numerous to

mention; however, we sLaIl list a few as illustrations.

(i) The distribution of a definite quadratic

form where the components hav a multi-

variate normal distribution.

(ii) The problem of finding the power func-

tion of the chi-square statistic, for

large samples, can be reduced to that of

finding the distribution of a positive

definite qua.dratic form in non-central

normal variates.

(iii)The distribution of a form of the serial

correlation coefficient can be expressed

in terms of the distribution of a ratio

of two quadratic forms. See Anderson El_71

(iv) Of special importance is von Neumann's

i3tatistic, [9_7) [20_7, the ratio of

1. N-mbers in square brackets refer to bibliography.



the mep~ sque~re suc-tessive difference

t3 the~ vartt~mce, t~se. to test whether

obserraton are independent or whether

a trond exists.

(v) D.rb- en;_ IPatson 1.76-7. une a similar

statistic t : test the error terms for

independence in least squ~ares regression.

(vi) Koopnians [ 12_7, says, "Assuming a normal

distr~bution for the ra.-Om disturbance, the

mathe.matical prerequisite for an estimation

theory of stochastic proceses is the study

of the Joint dist:'Ibutions of ceztain quadratic

forms in normal variables". Tha problem

Kocpr~ns considers is t'hat of estimating the

serial correlation in a stationary stochastic

procecs.

(vii) To tct2; hypothesis concerning variance

components in the analysis of variance, we

requi.re the distribution of an indefinite

quadratic form.

(viii) Hote3.ling [9]7, shows how the distribution

of the ratio of an indefinite quadratic form

in non-central normal variates to a definite

quadratic form could be used in the theory of

selecting variates for use in prediction.
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(ix) McCarthy [13_, shoes how the distribution

of the ratio of two definite quadratic forms

could be used to make an F test in the

analysis of variance when the assumptions

of equal variances and independence of the

observations are not met.

It would make this report quite lengthy to discuss the

distributions of all these functions of quadratic forms. We

shall restrict ourselves to the study of a definite quadratic

form in both central and non-central independent normal variates,

giving an important application for each distribution. Then we

shall discuss two special cases of an indefinite quadratio form.

Finally, we shall discuss a few inequalities. We give below a

slightly more detailed chapter-wise breakdown,

In Chapter I we shall be concerned with the distribution of

a definite quadratic form in independent N(O,1) variates.

Robbins [-167, has treated this problem but we have carried it a

bit further. Robbins and Pitman f17_7, have given an expression

for the distribution of a linear combination of chi-square variates.

We feel that we have improved on this form. We have derived an

expression which depends only on the value of the determinant of

the form and on the moments of the inverse quadratic form. The

expression is an alternating series which converges absolutely

and is such that if we stop after any even power we have an upper

bound, and if we stop after any odd power, a lower bound to the
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cumulative distribution function. Hotelling fo7 and Gurlard

[87, have suggested the use of Laguerre polynomials in finding

distributions of quadratic forms. A brief account of Notelling's

method will be given.

In Chapter II we have derived an expression for the

distribution of a definite quadratic form in non-central

independent normal variates which depends only on the value of

the determinant of the form and on the moments of the inverse

quadratic form in normal variates with Imaginary means, This

statement will be made clearer later on. This result enables us to

find the power function of the chi-square statistic.

In Chapter III we have discussed the distribution of

the difference between two independent chi-squares having different

numbers of degrees of freedom. If the degrees of freedom are the

same, the distribution becomes the same as the distribution of

the sample covariance in sampling from a normal population. We

have studied the properties of this distribution in some detail.

In Chapter IV we give some inequalities for the distribution

of a quadratic form in N(O, 1) variates and also for the general

case.
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NOTATION

All vectors are column vectors and primes indicate their

transposes.

"p.d.f." stands for "probability density function";

"c~d.f." stands for "cumulative distribution function";

"r.v." stands for "random variable";

"q.f." stands for "Quadratic form" ;

"N(Kp,)" stands for "a r.v. having a normal p.d.f. with

mean p and standara deviation a".



CHAPTER I

THE DISTRIhUTION OF A DEFINITE QUADRATIC FORM

IN INDEP3NDEIT CENTRAL NORMAL VARIATES

1.1 The problem.

Suppose we have a q.f. Qn = Y'A Y in YI'''"Yn wheren 2 i 1 ..

the Y are independent N(O, 1) variates, and where Y' = (YI,...,Yn),

where the dash denotes the transpose of the col-umn vector Y.

Let Fn(t) = Pr(Qn t). Then the problem is to find Fn(t). It

is well known that we can make an orthogonal transformation,

Y = P X, say, where PP' = PIP = I, such thatl Y'A Y =1 XPAPX
2 2=IPAX

l'DsX £ alxi, where Da is a diagonal matrix having the
i=1

elements al,...pan in its main diagonal, and where a,..., an are

the latent roots of the matrix A. Under such a transformation,

XI,...XX remain independent N(O, 1). So the problem is now to

n
find the Pr 1 E aii < t), where we assume that ai> 0, i=l,...,n.

1.2 The solution.

1 n 2
Theorem 1.1. Let 1n I aixi. where the x, are

1=1

independent N(O, 1), and where aI > 0, il,..,.n. Let %a E
j=l
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Then,

(a ) Fn (t ) = t nE ooa i(s1...an) 1/2 k- k:1 r(B+ki+l)

where E(n)k is the k-th moment of *~

(b) The series is absolutely convergent ad therefore it

is convergent.

(c) For any two positive integers r and s and every t > O,

2s-2 2r-1
E d k> F ' (t) > E dkc, where

k 1/2 k,1 r(B+k+l)
k=n 2.O

Proof.
Let dx = dx1... ndx and _7 z ax then

n"2 1.J  n 2
Fn(t) = (2n) 2 -1 I dx.

n-11_7 1

We shall make use of the Dirichlet integral;



=I n

1 #i

where -oo < x, < oo, and (/, c 3 , p, are all positive, and the

a xi pi
range of integration Is E(T) - 1. See Edwards f77. If we

expand the exponential in the integrand, we get

n ( n 2k

Jn~t) -( 1EkkO
nfIL7 k-O I~ d

We need to evaluate integrals of the following type:

J f cnx2)k
(E- x )  d .

fR_7 1

If we expand the integrand according to the multinomial theorem,

we get

E n 21
i+ ...+in=k i k.1 7 n ai an z



We now make use of the Dirichlet Integral stated earlier, where

oj 2)1/2, pj 2, (3 = (21 +i), getting

a

The problen nov is to evaluate this last expression. Recalling

DO k(k+)

that if X is N(O, 1), then =(X2)
k = r(1) , we find that

(Qa-E lZY2

22i 1 i1_7

21 21n
= -kE F k' Xl #sexnn

il+.,+in-k il'".9n . ia i n
1 . n



2i1  21n

i
1 +'"ain k j1 .spool ... an U

n

" r( 1 +2) ..r(1,2)
i +0ikink i in

spel , in a1 .a n

So that

n

s'I (2 x2) dx (0t) i*

E i d1 (a, .. )1/ 2  r( R k ) ( Y )

and

n/2~ 00 k E(Q)

This proves part (a) of the theorem.

To show absolute convergence we note that if

al> 2> ... > a >0, then

2 1 2

1 ~ a 1EI n
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12 r(j+k)

V k 2QEx) k T - ,so that
an 1. an r(

tn/2 o tk r(B+k)

Fn t jan )I k-0 k! . ~ l k

tn12 otlsn
<..... - < oo, for finite t.(al...an) ri/2 l

This proves part (b) of the theorem.

The bounds we obtain are based on the fact that if r and s are

2s-2 (z) k
any two positive integers > 1, then for z > O k: >e'Z >

- k=O

2r-1 k

kuO

This proves part (o) of the theorem.

In the case where scme of the latent roots are zero, i.e.

when the form is positive semi-dsfinite of rank r, say, we need

only replace n by r in the theorem and in the proof.

Remrks.

(i) The moments of Q., Z(%)k, are easy to obtain from the

n
cumulants of Qn. The r..th cumulant of Qnis kr(Q) .L2. 1 air
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From Kendall -117, we have expressions for the first ten moments

in term of the cumulants.

(ii) Let Sr be the sum of the first r+l terms of the series

for Fn(t). Then 8O, $2, $4, ... is a sequence of upper bounds and

S1 , SY S), ... is a sequence of lomrr bounds to Fn(t). If 32k+2

is the error ccmitted by stopping with S2k+l' then

E2k+2 < l.u.b. S2r - g.l.b. S2r+l ,  r-0,1,...,k; k=0,1,..,,

K2k+ll.u-b. S2r - g.l.b. S2ri ,  r-l,2,...,k; k.l,2,...

The values of l.u.b. S2r and g.l.b. $2,+l depend on the values of

the latent roots. We note that R&+2< S2k- S2k+l = the last

term included, and .2k+,< S2k - S2k-l = the last term included.

Hence, the error is less than the last term included and it is

positive if we take an odd number of terms and negative if we

take an even number of terms.

(iii) The above theorem seems to be in several was an

improvement over the method given in Robbins [16.

1.3 An application: Te distribution of a sum of squares in

depndent variates.

Suppose that Xl,***..Xn have a Joint multivariate normal

distribution with zero means and covarience matrix equal to A"1.
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n 2

Then the problem Is, what Is the distribution of E X? Nov

AI1 1/2 J ~~p ~'rx

Make an orthogonal transformation, I L Y, say where L L' - L'L 1.

n YThen XIX - I and ZIA I - MILA L Y E 2 hr r

the latent roots of the matrix A. Nov make the transformation

z4- a14, getting

n

Prf < t 7 (2%f) fi Erp -1zz dz
Prf~ 1 Ea z2< t7 2

-i--

a Pr" < t7, end we can make use of

theorem 1.1.

RwAark.

Combining the results of theorem 1.1 and the above application

it is easy to show that we could find the distribution of a definite

q.f., X'A X, in XI, ... , X, vhere Xl, ... , In have a imltivariate

normal distribution with oovariance matrix B 1 , and this distribution

involves as parameters the characteristic roots of AB"
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We shall now state, without proof, an obvious corollary

to theorem 1.1, obtained by letting the first m1 latent roots be

ai) the next m2 Iotent roots be a2, etc.

Corollary 1.1

( 2 2Let S - ... + ar Y.r ), where the Xm are
r i

independent r.v. 'e having a central chi-square dietribution with

mdgosof freom 3t S.a Ve(a1 x2 * -1  2

f rjee om

r
r

M a E mi, a,> O, Gr(t) = Pr(Sr< t), then

tM/2 00 k E(S) k

where E(B ) is the k-th moment of Sr . The series is absolutely
r

convergent, and for any two positive integers s and j end every

t> 0,

2s-2 2J-1
E dk> G(t) > E dk, where

k=O k=O
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Remarks.

(i) The mcaents of are easy to obtain fro the

cumulants. The J-th cumulant of Sr is k (S2) E ii
i-l

We can find the first ten mcments in terms of the ctmulants

frcu Kendall [17.

(ii) The above corollary gives a method which seems to

be an improvement over the one given in Robbins end Pitman f17_7.

1.4 Notelling's method of Laguerre polyncmials.

In this section we shall give a very brief account of a
[i7.1 t2 2

method suggested by Hotelling lo_7. Lt % - (a1X2+...+ 2Xn),

where the X are independent N(O, 1) variates and where ai > 0,

iwl,...,n. Let g(q) be the p.d.f. of Qn and let

f(x) -' x>0 nf r(m) , where m a §.

Then the suggested expansion for g(q) is the Laguerre series
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g(q) a f (q) E br ()

where (a-1)(q), r=0, 1,..., is the sequence of Laguerre polynculals

satisfying the relation

00

0

1,3 0 0,1,..., for a > 0.

The Laguerre polynial (a-1)(q) has the folloving explicit

representation:

(an-1) Sao. ..- L 1 0, 1(q)L S=O -V V!

See Sgego [18_7. It follows frca the orthogonality condition that

00

be g(q) L(-1)(q) dq,
0

an8 so b. is a linear function of the moments of q.' The series

g(q) - f(q) (1+b1l(q)+b2L2 (q.)+...)
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converges uniformly over the whole real axis and o we can integrate

term by term.

Remarks.

(i) The main dravback in using the above expansion is

that no convenient bound is known for the error ccitted by

stopping after a certain number of terms.

(ii) Hotelling suggests that the above series be used

to find the p.d.f. of the ratio of a definite quadratic form to

a sum of squares and the p.d.f. of an indefinite form by

convolution, since an indefinite form Is the difference of two

definite forms.



CHAPTER II

THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM IN INDEPENDENT NON-

CENTRAL NORMAL VARIATES

2.1 The problem.

Suppose we have a q. f. Q-in Y " Yn where the

Yi are independent N(ti, 1) variates, and where yt , (Y1, *#*' Yn).

Let

Gn(tml, Sees tn)  G n(t; )- Pr(Qn,< t)

then the problem is to find Gn(t; ). Let us make an orthogonal

transformation Y - rX, say, where r'r - rrt - I, such that

Y'AY - Xtr'ArX - XfDX ZaiX2
1

where Da is a diagonal matrix having the elements al, *.., an in the

main diagonal, where a, g.. an are the latent roots of the mMtrix A.

If EY " , then Er - rt - p (say), where t' - and

41 as (L I' 'n )  Hence, under such a transformation XI, *Do) Xn

remain independent with the same variances as Y *.., Y n, but the
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mean of Xi is now 1i " (71it 1 " * Ynitn), where (Yli "') Yni )

are the elements of the i-th row of r 1

So the problem is now to find the Pr [ aX2 zaji< t-1, where

the Xi are independent N(Gi, 1).

2.2 The solution.

Theorem 2.1 Let Qn Za , where the Xi are independent N(lLi,l)2 n

and where ai> a2  > an > 0 let n Y k -where the

Yk are independent N(i'Ilk, 1), i - /Z , Then

-X tn/2 00 c C

( a ) G ( t ; a) - .. -

(alO.an)1/2 sO sj r(M + s +

where o- E(Q )s 2ad) -Z~

a nd 2 E i

(b) The series is absolutely convergent and therefore it is conver-

gent.

(c) For any two positive integers r and k and every t > 0,



2r 2k-1
Z ds > Gn(t;a ) 

>  Z ds, where
smO s=O

e-x t n/2 (.t)q c s

3 a - ) r + + 1 )
n 112+

Proof, We know that if the xi are independent N(i, 1) and if

S 2 andY= 2
2 P ad then the p.dof. of Y is

_1 -y - 0m
e e y Z

m-O mO rim + +

n
Let / -R7 f Z ai i _< t 7 , dZ - dyI .. dyn, and X j then

n I 2iJte

n X _x -yJ - 00 (X Jyj)
Gn(t. L)IT e s yj

Jul .O r(i + dy'
12



ii in
x00

-e I~an
k-O +000.+in-k 9G~ -4-

where

see ~ ~ Ep y IT 2 dyj

[R 1 1jl 3 3

Expanding the exponential and making use of the Dfriohlet, integral

stated in (1.2), we obtain$

ii in
x00

nn 1 2 1

n r~l~j+!).. .r(in+jn+!~)

al. 2an ~2 r(k~r4l+)
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This can be rewritten as

"X tn /2  )00
G c5 E CwhereGn(t; (al .an)I/2 s-O si r(D + a + 1)

S = ... z cs  -

S

k-O i ...* in - k Jl.°.+j n- s

sl XI ...),n  r(j I+ I) jn +
where d J an 1i (jil .) r( ) i

al ,, n ..
•nQ11) 6Qn

The problem now is to evaluate o

Let a "Y , where the Y are independent N(*k, i), i- /1,

then

00

Y2r - (2n)-1/2 J fr E 2 (Y_*2 dy

-00
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a n- (2r~) (2)J 2r-J r(r-j. S.

J-0 2

E P 
2~.~ and

E( 2- s E Y2j, y j

n 
y J* 

*.J w 
0.3J n a i

1 n

2 l skii in

ii -in -0o i no

where h 
n) 2ii n 2 -i1  

1)rj seeL~
r~i.+ r(i2 + 1)

-Z 
d
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where d - _l n ... r

i 11iJj1 - 1 )e*(-.~jr(k.+ 1)..r(in Va 1 a
2 nn. ).12*n ,2

But this is Just %. Hence,

Gn(t -x) tn/2 0 _ts E(Q*)s

(aio*. I /n 0 o 1 r( s + + 1)

This proves (a) of the theorem6

I' kr( n) is the r-th cumulant of Qn, it is not difficult to

uhow that

kr0 .(r-1), n r a(l + L)
2 J=1

Hence, to find the r-th cunulant of ** we must replace 4j by ij and

a by a 4 , getting, kr(Q *) Z- a-r(lir~L) . There-
r 2 J=l

fore, c. is the s-th moment of a r.v. whose s-th cumulant is

ke )( .
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~ in -1 2f a I X, where the Xi are independent N(O, 1),

then k( Q* ) = IZ aj r . Therefore, k (Qn) k(Q) ,
2'L 2 r. 2

r( s)
and it follows that E< s Consequently,

EN asrfn)

-Xn/2 00 8r (11 4, s)
en(tt e t. " 2

(al...an)I/2 8=0 a' as r(n s + 1)

Xn2 t/an
e t e n < oo for finite t.

nl 2

This proves (b) of the theorem. The bounds stated in theorem 2.1

are based on the fact that if r and s are any two positive integers

> 1, then for z > 0,

2s k 2r-". (' )

k-0 k) k-0 ki

This -roves (c) of the theorem.
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Theorem 2.2. Under the conditions of theorem 2.1,

Gn(t; 2)_ !a-x Gn(t; 2)

where Gn(t; 0) equals the Fn(t) of theorem 1.1.

Proof.

.. -X -y: -1/2 oo (Xiy)
Gn(j) -" I dyi.

Now,

n e Yi 21

7 -1' ... . +_ dyi = Pr _'+.( ,x 2 e t 7,
2i r(12 )

2

whereX 2 is a r.v. having a central chi-equlare distribution

with 2 I+1 degrees of freedca. Hence,

Gn(t;il)  E E
k=O Jl+...+Jnek J1 "'n"

Pr f(a x 2 + + & 0 2 )
2 1 2J,+1 n r+
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and so,

Gn(t ) _>e O n(t; 0)

WTe note that equality is attained for any given t, by putting. % 0

(in which case a - 2) .

Theorem 2.3. Under the conditions of theorem 2bl)

Gn~t 4)_n(t; O)

Proof,

Usine a special case of a more general unpublished result due to

Sigeity Moriguti, we find that

ex Ix L2dx < J exp- 2 x 2 dx
2 2 a2 t 2

We can generalize the above inequality to the case n - 2 as followst

f f exp ' (Xl [ (lx) 2  (x 2 - 2)2 7 dx dx2
[~xma2 2 <t7

- I J exp-(,-,)2 I  e8p - 2(x2=i,2 dx 2
2 2

f a2x t.J ajjx< t-ae2 -_7
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< 2v' 2J  2x -~ xdXl x - l x2-*2) 2122

< exp - dX1 + 2 ) dx1 dx2  .

1 2 2) 2o7

The proof of theorem 2.3 w suggested to the vrtter by

Professor 8. -. 1o.

(G) The introduction of an cmasinary mean in theorem 2.1

i erelt a swtheatihal convenience; we could have estted thie

formulation altogether an erely stated that o mi the s-th
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cant of a r.v. whose s-th cumulant is ks(O).

(Ii) The moients c are easy to compute when we know the

cumulants. Kendall f17, gives the first ten moents In terms

of the cumulants.

(ii) It can be shovn that On(t;2) is invariant under

an orthogonal transformation Y=rX, say, such that r'A r a Da

and r"r a r r' a I.

2.3 An application: The power function of the chi-suare statistic.

Suppose that the observations from a random experiment

can fall into any one of k cells and that the expected number

of observations in the i-th cell under ff and El Is m0 and

respectively.

That Is: H0: 0 enst H0 ~..,k Let

0 2

Xi mi

2 k (ni-m1)
2

X E s where
1-1 i

nI is the observed number of observations in the i-th cell. If

i-p is the power of the test, then
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o s [ X t I a,..,... -7

(2 r" kl2fw...f exp[f0"X2 k73T a )

[ x2 e t7 - tl 121

n-i
approximately, for sufficiently large ni. Putting xi  m-

0
0m i-mi

a1/2 - mi/mi, Pi -- , and letting xi+pjiYi , we get

-2 k/2) f
Pry o, X i. ..,k_7.=(21r)' 4",, (.V,- ,, _ d,

k

Eence, the application of theorem 261 will give us the power

function of the chi-square statistic.



CNAPTfl III

TRE DISTEhUTON OF AN~ INIIITZ QUARATIC

FORM IN 13DEPUD3Ny'Ti CENTRAL NORMAL VARIATES

3.1 ftecial 08.80 1.

As a prel Winary step to the study or the distribution or

an Indefinite q.f., this section is concerned with the distribution

of the difference between two independent chi-squares having

different numbers of degrees of freedom. If the degrees of

freedom are the same, the distribution becomes the same as

that of the sample covariance in sampling from a normal population.

We shall study some of the properties of this distribution In

order to anticipate the behavior of the distribution of a more

general Indefinite q.f. Othersf [5-7, [0.. [-27have

considered this problem from a slightly different standpoint.

The main results of this section are:

(i) Recurrence relations 3..4, 3.1., 3.1.6,. 3.1.7o 3.1.20

(11) Inequalitiesl 3.1.9, 3.1.21

(iii) Further properties 3.1.12, 3.1.13, 3.1-15, 3.1.16

(iv) An application of a result due to Berry [33,o 3.1.19

f n,m n7 Ya' where In and Yare independently

distributed with p.d.f. h,(x) anem~x respectively, where

h (z) 1n -, x >0r(j)



then if the p.d.f, of Tnom is g, M(t),

00

Snm(t) f hn(x + t)bm (X) 61. t> Of

0

00
oohnx) I'(x - t) dx, t O

0

we see that given the p..f, 
for t>o, to get it for tco, 

replace

t by -t and interchange and m. Therefore, we shall consider only

the case t> 0, for definiteness.

Hence,

~n~a~) r()r() (xt)2 X2 1, t> 0.

The mment generating 
function of TnA is 

M(0) = e

n a

(- ) @(10)" . lrcm M(G) We see that

(1) If n,m'-- ooo that n 1, then Tno is

aeyptotloll normal (ut fmr ith)

(ii) If n 00 o, 'but 3 remains finite, then Tul is
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asymptotically normnal AME) 4 ).

(iii) If a-- oot but n remains finite. then Tnm Is

asymptotically normal (", .1).

In 3-.1.1 lot x/t - , getting

n a

.t- "Y -2y +oe r-
3.1.2 gn (t) t 0(I dy.

00

Let n/2 - p, m/2 - q, and let

00

3.1.3 I(pq) f 0.2yt(l+y)p 7q dy.

0

Integrate 3.1.3 by parts three epearate times as follow.:

() u (1+j)p , dv - "2  dT,

(ii) u . (. Y)P 0 • t dv a yq dy,

(ill) u - (i+Y)p yq-1 a o 2 ty dy, gettlng

(1)' I(p,q,) - ( ) q I(p,q-1) . p I(p-1,q)_7,

e>O, q>O
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(ii)' I(p~q) a ... )I(p-l..q+l) + (2t) pql,q+l q.

m>-2) q+1,.Os

(iii)' I (p~q) = -) f[(q-1) I(p,q-2) + p I(p-l,q-l)
t2

+ 2t (q-1) 1(p) q-1) + 2tp I (p-1, q)_7,

a> 2, q-.>O0, respectively.

The restrictions placed on m and q are to prevent the integrated

part from becoming infinite. Equate (I)' to (iii)' getting

(ft) I(pdl,q) - (L) i(p+1,q-1) + (~)I(p,q).

In Wi' replace p by p4l and q by q+1 and then substitute from

(ii)' and (iv) into (i)' getting

(V) 4t2 I(p+l,q+l) - 2(p4l)(q+1) I(p,q) + q(qdl) l(p4l,q-l)

+ p(p+l) l(p-lqdl).

Nov q(qdl) I(p+l,q-l) + p(p+l) I(p-lpq+l) - q(q+l) I(p-l~q-1)

+ [ p(p+1) q(q+l)-7 I(p-l..q~l) + 2q(q+1) I(p-lpq), and I(p-l~q+l)

+I(p-lq) - I(p,q). Substitute into (v) getting
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4&t2 1I(p+l, q+1) f [2(p+l) (qd) p (p+l)+q (q+l)j7 I(ppq)

+ q(q+l) I(p-1,q-l) + [-q(q~i)-p(p+i)-7 I(p-lpq),

so that finallyp

~n(n+2Pm +m+2 +2(n+2)(m+2 +3-- gn+i,m+4(t) 4(n+2)(m+2) 7n 4.2  2(t

+ n~n42) &n~m t - 2nC! +2) (M+2)- 8n, m+2 (t) '. t >O.

The same relation holds for t <0 if we replace t by -t and

interchange n and m. Note that if nam, the last term vanishes

and the relation reduoes to

.(l gen2(t) + *()

g4P+() n+2 t)+n(n*2) 8nm

From the first integration by parts we get the simple relation

3.1.5 gn+2,u+(t) -I gnEs,m (t) + gn~3 +(t )7, for all t.

We now make use of the p.d.f, 'a to obtain the c.d,f. '5.

For x ,

00

Prf T... f0 gn,uPt) dt
x



31

00 00 n a

1 f f 7(y+t) y dy dt.

r(~ r (32)

00 R.1 P-

Integrate by parts where dv e't dt, and uj e'-'(y+t) - y 2 dy,

0

getting

Pr_'Tnm >x_7 -= ,,.x) + Pr[Tn.2,m >x-7.

Hence, if n is even,

(n-2)/2
3.1.6 Pr Tn , m >x..7 1 12  )where

3=0

g (x) - Pr ,T >x.7-•
2,m 2$m

If n is odd

(n-3)/2

. Prfn, 3 ,.7- m 8.2,,m() + Pr[T1 , x..

From 3.1.6 and 3.1.7 it is seen that if we have a table of gnM(t)

aid if we know Prf[T l :.7 for all m, we an f ind PrfT,,,> z7
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for all n and a.

Our first objective, then, is to be able to find

gnM (t) for any n and z. If we consider a rectangular table

of gnz(t) having n columns and m rows, we will find that

given gnm(t) for n.,m-l,2,3,4,5 end g2,M(t) for mml,2,..., we

can complete the table using 3.1.4 and 3.1.5.

First of all we can fill In the second columrn using the

fact that

-te
2,.Mt) - 2 MUl,2,..., and

-t94()-a (t +) -,,,5

If we let nrr, we obtain, as we shall see later, that

( ) (n-l)/2

gn,n(t) - 1/2r(n) K(n-l)/2 (t ) '

Letting nxl,3,5 we find that gl i(t) 23

t2t
R

n g, 5 (t)u'5; 2 (t), where %n(t) is the modified Bessel function

of the second kind of order n. See McLachlan [14.7, and

Watson 217.
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We shall now find the p.d.f. for cases where nm.+2. If

we complete the square in 3.1.1 and let nnm+2, we get

() 00 m( 00

12 1

Using the fact that

1/2C n 0 o-i1
X T -ty 2

Kn(t) . (n), e'ty(y2-) dyj, andr(n+2) 1

t-rkn(t)-7 -t-Kn+i(t), we get that

M+lt 2
9z,2.(t) - Zl.rlr-1"'(m.,)/2(t) + 1C,.+1)/2(t)_7

If we now put m-l,3 in the above expression we find that

93, 1(t) . K(t) + K(t)7, and



4pv% - -...
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g5;3 (t) u -K(t) + K2(tL7.

We can now use 3.1.5 to find g5,1 (t), 83,l(t), 1,5 (t), and

S, 5 (t). There arR still six values remaining to be found,

namely, gl,2 (t), g1 ,4 (t), 93, 2 (t), 93,4(t), 95 2(t) and g5, 4 (t)

which can be expressed in terms of the incomplete gama function.

In fact we find that

t00 n11

L.2(t) e12~• r e-y" dy, and

e2 2t

et 100 100

r() 2t 2t

Letting n3,5 we get 93, 2 (t), g5, 2 (t), g3 ,4(t), and g5, 4 (t).

Using 3.1.5 we obtain g1,2(t) and g1,4(t). Now we have all

9n,m(t) for n,mnl,2,3,4,5, and together with g2 ,(t), 3.1.4 and

3.1.5 we can get all the romaining gnm(t).

Our second objective, then, is to find PrfT1 ,,,> 0_ for

all m. We shall first give a method of evaluating this when a
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is even, and then e. method for any m.

Evaluation of Pr[T > x 7, when m is even

00

Pry- T > x-11 1 f e4  (t) dt, where

(t) f " yr(y+t) 1 r-.

Y 0-y y .1 (~t) dy.

0

Expand H(t) in a Maclaurin series about t=O. Nov

()1 00 M(k(t) o(-) k2 r(k!) -(key) dy,

0

and R( )(0) (-1) it r (k2) r 12-) 2

We may write

r tk (k)

E " (0) + Rr(t), where
k-0
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t

r- (t'y)r (r+l) (y) dy.
0

Note that J H(r+l)c )I <_ H(r l)(o) , so that

R (t), ~tr+l (r+l)

Therefore,

00

I P+rjoT >+
lrj u0m •"t  f * dt .

r(r)(O): J tr+1 dt

Hence, the error committed by stopping after any term is les

in magnitude than the first term neglected.

Evaluation of Pr! Tm1 x7 for rwy m.

00 M-1 00 - "  -

Pr[fTI,> x7 - 0 0 t 2 oo. 2 2)Mo •1r(y (.+Y) dy dt.

2 x 0

1

Let H(t) - (i+t) 2, then



INt 1.(t~ ~ + 1) + Rr(t), where

J0 IJ.L r(

t

r(t. f (tYrHr1(Y) dy, and where
0

1

1~+JJ -) r+1 2~ r(r+J) (1+t) 2 Then

Then I ,(r~-)()j I q(rl) (0, so that

IrIR MH rl (r+l) (0)1

Therefore

Pr.T 1 3>x7. (-)P 4J-) r.+) W ()I

22
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00 1

I j J a t dt, J-0,1,...

12 x

Rence, the error comitted is less in magnitude than the first

term neglected. We find that

01(x) - ... 1 + (x)

By repeating the above recurrence relation several times, we

find that all I 1() can be made to fall back on f et/2 dt,

which we can get from a table of the incomplete game function.

Briefly summarizing, then, we have shown how to evaluate

any g,,(t) and PrfTl,m> so that we can use 3.1.6 and 3.1.7

to find any c.d.f.

Inequalities.

In what follows, under this heading, we shall discuss

certain inequalities related to the distribution of the difference

between two independent chi-squares considered in the preceding

sub-section, 3.1, of section 3.
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If n- 1

1

I.. t a 0-2y1,t _, +Zt)  2 -y h2t) t0,

r r (e 0ie. 
" 7

-Z- 1
and since a 2t (1+{ 2 1, it follows that

and
mm ._

3.1.9 2 fi-R x)_7 ,Pr[ T, I MzT O -1(l 1 2

where Hi(x) - f h.(t) dt, x >0.
0

If n.m_ 2. thn since

( t)T :0_ (I+t) Y 2 It follows that



4i0

3. 110

JM - Y dy;-gn.(t) t
2t

2 r()rQ)2

Again, since 1 .1 (i ) 2 S it follow from 3.1.1 that,

for t > (-2)

3.1.11 2- hu(t) jS gn,R(t) 2 t 1-r-

Now lettizag-t --- % oo In 3.1.8 and 3.1.11 ve have

a
3.1.12 1,(t)v 2 hn(t), so that

Snu(t as the eam order of oncai t at .oo aa the p.d.f. of

X2  with n degr*ee of freedom. SWIai yrl , Lu(t) has the Nme

order of contact at -oo m the p.d.f. of X 2 th a depree of

freedm.

In 3.1.10 letting t rap. 0. we hav.
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r(.A- l)
3.1.13 6 ,(O) - ...- , and a o

22

the frequency curve does not meet the origin.

The case n=.

Under this heading we shall consider certain properties

of the p.d.f. and c.d.f. of Tn n . In this case the p.d.f. of

Tn n is the same as that of the su of produots of pairs of

independent N(O, 1) variates.

On the p.d.f. of Tnn.

The p.d.f. is snetrio and so we shall consider gnjn(t)

for t> 0. If we put nxr in 3.1.13) 23 get

3.1.14 (0.. r (n-) 23.1.1 ~ ~ ('n1° n'vC 2r(I)r( l§ n

We can show that gnsn(O) is a decreasing function of n.

Differentiating 3.1.114 we have

r(Tj~ raO (1y -



From Cremer (T57, P. 131), we have that r'(n)/r(n) is an

increasing function and so gn, n(0) is a decreasing function of n.

That is,

3.1.15 d n( ) < 0.

Finally, it is easy to show that

d

3.1.16 dt gn,n(t) - 0 at t=O, and

oonseqvently thet en(t) has its maximum at the origin.

If in 3.1.1 we put nmr, and lot 2x = t(y-l), we get

(t)2 .! (t

3.1.17 a,n(t) - ,(t)

If n-l, gl,,(t) - Ko(t). It Is known that Ko(t) is asyptotic

to both axes and hags a. .ogaritm.ic singularity at the origin.

Using a well-Imown expansion for ro(t), f1[47 we find that

3.1.18 l1,l(t)AO i log 3, as t -- + 0.



F43

The ament generating function of Tn,n becomes

n
M(B) (1.-o)" nd so

p2s r 2) rijs)
'~njn" s2 r( )

2)s

It is worth noting that if we expand T2s and use the )mownDin

macents of X 2, we got as a by-product that

E52. r(B+2s-a) r (-1) 2 a s: r(+ r(. ),

where euOl,.., and nul2,...

On the c.d.f. of ..T.n

For large values of n we may wish to use the normal

approximation, since Tnpn is asymptotically normal (0, An). It is

n
here appropriate to use a result due to Berry [C37. Let X- E xi,

i-1

where the x, are independent r.v. s. Let X- , Var X0 2, the

c.d.t. of I be (x)p )b(X1) aE I XJ '/ver I) A a ax %b(XI), and
I



44

x t2

G(X) - (2v) a dt) then

-00

SUP -i-, c where-00< x < 00a

1

(2x) <C 1.88, according to Berry.

If we let U - -') then we may write T 1
2 w let U ,n 1 U

where I and YaI re independent N(O, 1) variates. Putting n-mml,

and 2x t(sec 0 - 1) in 3.1.1, we find that ! I Ui . 8/.

If rn(x) Is the c.d.f, of Tn,n, then

3.1-.19 Sup n x (vn) - G(x)_ 8C
00 1ern 0

00

Conaider next f t n Kn(t) dt. Integrate by parts where

x



U= t n(t), dV - t' 1 dt, and use the relation t K(t)

nK%(t) - t K1n 41(t)s getting

00 00
t n +l Kn+l (t) dt " n l Kn(x) + (2n+l) t t n Kn(t) dt.

x 2

Replacing n by (n-l)/2, ve have

3.1.20 7+n2(x) = Fn(x) - (x) x/ 2 ,

- Fn(z) - gn,n (x )

Hence, knoving that g2 2 () - . - l~x)

.. 2x) -2:2 1 )(x)
O-Z

F2(X) - I - - ) we can obtain all F2,+2(x). Similarly, having

a table of the Bessel functions IC0(x), Kl(X), ... we can get all

2n+3(m).. if ve know Fi(x).

Evaluation of Fl(x).

00

We have x£l - Fl(x)7 of o(t) dt. Using tables of

x
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r 0 (t) we could evaluate 1l(x) by numerical quadrature; however,

we give an alternative method here. Integrate by parts where

Ti a 1/t,. dY m tK 0(t) dt, and use the relation f t%_,1 (t) dt

-t' (t), n-l,2,.., getting

00 00f K0(t) dt - -lx K r(t) dt

x x

If we carry out this integration by parts repeatedly, we find by

induction that we get an alternating series, in which the error

cmaitted by stopping with a given term is less in magnitude

than the first term neglected. If dr is the r-th term of the

series, then

(-1 )r+l 
2r r(r)

d r = r(j) x r-1

Furthermore, if s and k are any two positive integers,

2s-1 2k
3.1.21 E dr t S .f1 - Pi(X)_7 t E dr

1 1
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3.2 Special case 2,

In this section we shall give an expression for the p.d.f.

of an indefinite q.f. when the latent roots of the matrix of the

q.f. are equal in pairs.

Theorem 3.2.

Let

%.1 Y k Yk" .. - an Yn))

vhere the ai> 0, and the Y are independent r.v. 's each having

a chi-square distribution with two degrees of freedom. If f(q)

Is the p.d.f. of Qt, then

k a n-2 k
f (q)-Ee a T(a -a )-I T(a +8. q>0

Jull swl

n a3  n-2 n
E e aj -T(aj+a) T( (a-) "' , q<0

J-k+l Jul =k+l

Proof.

The moment generating function of Qn is
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4(t) - f.(1-alt)...(l-akt)(+a,+lt)...(l+,t)_7 -. Then

00

f(q) - f -itq M(it) dt.

-00

We can evaluate f(q) using contour integration. Let us take as

our contour in the complex plane, the real line from -R to R

and then the semi-circle of radius R,. in the lover half-plane if

q> 0, and in the upper half-plane when q-cO. In both oases the

value of the integral around the semi-circle tends to zero as

R-- oo, if n> 2. Hence

f(q)=2wi [Sm of residues of the integrand at t=-, Jml,...,k7 ,

q> 0, and

-2i fsum of residues of the integrand at t=aj, jak+l,...,nJ,

q< 0.

Evaluating the residues, we get the form stated in the theorem.



CHAPTER IV

FURTMER BOUNDM ON TU C.D.F. OF A WINITE QUADRATIC FORM

IN IN3PENDET IZOTICALLY DISTRIBUTED VARIATES - EACH

CENTRAL NORMAL OR MORE GENERAL

4.1 The central normal case.

If we make use of the p.d.f. of Q2 when the latent roots

of the matrix of Q2 are equal in pairs, we can obtain some

convenient bounds on the p.d.f. of 0n when the latent roots

are not necessarily equal in pairs. Let

= 2 _2 2 2X 2hereQ , 2 1(ll+.+a~M+ M+j3 ;+l+...+ t~), where ai> 0, 1-1, ... ,2m,

and where al=am+l, 2'm+2) ... , aa2, then the moment generating

function of Q is

M(t) -_l-alt)...(1-at)7 -1, and hence the p.d.f.

00

of Q. is h(q) m ' *•itq M(it) dt.

-00

Using the calculus of residues we readily find that
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a aj m.2-2 v .
4.1.1 h(q) - E a ,a IT (a, ~ ak)

Jul. kal k
k)j

Suppose now that we want the p.d.f. of

1 j(,2+.. 2 v, here al~ a2>t .. > 0~> .Q 1 21 n i

We form the two e.xrrmsslons

2u fa [e(X+ 2 ) + e (1 2 +X2  + . + . 2n a2

2 2 2 2= + a X3 44) + ... + a (x + X ), so that

We can find the p.df. for Q. and QL by using 4.1 so that we have

bounds on the c.d~f. of Q. Lot fU(q), f(q), fL(q) be the

p.d.f. 's of QIT% Q2n' Q. respectively. Then

t t

ft dq S Pr[Qft J / fr(q) dq, where
0 0



ii

n 42,J.1
f,(q) - • a 2 T(. (a2 .- a2k l " ,

Jul k-
kjJ

n a!n- n-1'
fz(q . a23 a~~1 j ,T (a23 - a..

lRemarks.

(i) The above inequality was suggested by Professor

Hotelling.

(i) The above method could be extended to cover the

case of an indefinite q.f.

.4.2 The general ease.

In this section ve shall discuss briefly a system of

inequalities for the distribution of a definite q.f. Let

Q~ ~(1 Y~+ .. + %12) where

Prf > o7 - p, Tih,...,n. en

Pr(Y2 <c,...,Xc) * (l-p)n. It follows thatAn
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Pr % <-Q,, l + ... + ,)-7, ( 1 p)fl

Let a, t a2 ... t an:>_ O, getting the following system of

inequalities:

Pr 1Qco a7 - (1-p) ,

PrI-Qn (an.1+ a,)-7 (1 -P)f + (n)(,-P)n'l ,

P" -f'n2(%_,+ %. %)_7 _'P)"*(n)(,"P)n'lp*(n)(,'P)n'2p ,

Pr [Qn C (al.... +%)7 _-p n

The above system was suggested to the writer by Professor

Harold Hotelllng. The following Improvements are due to

Professor S. N. Boy.

Suppose that the distribution of Y9 is known and that

Pr(y 2c) p 2

-an

Pr a 48 > 2P
-i ~ n
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. .o ) I
2r(. 2o +

Pr(Y a2c na1+..'..+an,

Then it follows that:

(l-Pn)n _ Pr(Qn <o) (l-Pl)n..

(l-pn)n. Pr(Qn <c) (_P2) n + (n)(lP2 ) n l P2

(1-Pn)n< Pr(Qn C)<c (1-P,)n + (n)(1p3)nlp3+ ()(1-)
n-2 21

(i-Pn)n < Pr (% cco) 1_
1Pn

Hence we have one lower bound and a whole system of upper

bounds. Obviously, we would want the least upper bound, in

practice. Incidentally, P1 S P2 S
- "" S Pn.
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